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SYMBOLS 

sum of t h e  observed stimulus l eve l s  i n  f irst  n blocks 
(see Eqs .  2 and 3) 

s t ep  s i z e  (distance between adjacent stimulus l eve l s )  d 

E 

F(x)  

eff ic iency (see Eq. 9 )  

probabi l i ty  of correct  response due t o  sensory mechanism 
(see Eq. 4 )  

probabi l i ty  of correct  response due t o  guessing (see Eq. 4) 

t r i a l  block length 

number of t r i a l  blocks n 

probabi l i ty  of correct  response ( see  Eq. 5) 

probabi l i ty  of decreasing t h e  stimulus l e v e l  following a 
block of t r ia l s  

- P 

p+ probabi l i ty  of increasing t h e  stimulus l e v e l  following a 
block of t r ia ls  

r 

probabi l i ty  of  remaining a t  t h e  same stimulus l e v e l  following 
a block of t r i a l s  

decrease stimulus l e v e l  i f  number of correct responses i n  a 
block is  2 r 

r e l a t i v e  eff ic iency [see Eq. 10) RE 

increase stimulus l e v e l  i f  number o f  correct  responses i n  a 
block is 5 s 

S 

a general f ixed stimulus l e v e l  S 

i t h  stimulus lave1 fixed p r io r  t o  an experiment X. 
1 

y3 

YO 

cp 

i n i t i a l  stimulus l e v e l  

phasing fac tor ;  distance from 1-1 t o  t h e  fixed stimulus l e v e l  
c losest  t o  u 

t r u e  threshold value u 
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1; estimator of 1.1 (Eq. 1) 

IT asymptotic frequency of stimulus l e v e l  i 

(T standard deviation of t h e  underlying normal d is t r ibu t ion  F(x)  

i 

SUMMARY 

The block up-and-down , two-alternative , forced-choice experi- 

mental design f o r  t h e  estimation of sensory thresholds i s  investigated.  

A mathematical model of t he  procedure i s  developed and recursion for- 

mulas are derived fo r  b i a s  and wean-square e r r o r  of t he  sample average 

estimator.  Block designs for various s t ep  s i zes  are compared on the  

bas i s  of two measures of efficiency: 

reciprocal  of t h e  mean-square e r ro r  of the  average estimator per  t r ia l  

and ( 2 )  r e l a t i v e  eff ic iency of t h e  average estimator w i t h  respect t o  

the  probi t  estimator based on f ixed stimulus leve ls .  

(1) eff ic iency expressed as the 

INTRODUCTION 

Up-and-down or "staircase"  designs have been extensively analyzed 

and applied during the  pas t  f e w  years t o  psychophysical experiments. '-* 
These experimental designs,  widely used i n  other f i e l d s  such as bio- 

assay and explosives research ,'-l were developed t o  estimate points  

on a response function where responses are quantal;  t h a t  i s ,  responses 

are  categorized as occurring o r  not occurring following a stimulus. 

I n  t h e  appl icat ion considered i n  t h i s  repor t ,  t h i s  function i s  t h e  

probabi l i ty  of correct  response and i s  assumed t o  be i n  the form of a 

gaussian psychometric f'unction adjusted by E+ correction for guessing. 

The up-and-dawn method consis ts  i n  giving t h e  experimental subject a 
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series of s t imul i  at a f ixed number of sequent ia l  t r i a l s  according t o  

t h e  following ru l e :  (a )  following a nonresponse, increase t h e  stimu- 

lus t o  t h e  next higher stimulus l e v e l  for  t he  next trial, (b)  follow- 

ing a response, decrease t h e  stimulus t o  t h e  next lower stimulus leve l .  

This procedure tends t o  concentrate t e s t i n g  around a f ixed point  on 

t h e  response function whose corresponding stimulus l e v e l  may be  defined 

as a "threshold," or point of subject ive equal i ty .  

down method i s  an extension of t h e  c l a s s i ca l  up-and-down method i n  

The block up-and- 

which t h e  decision t o  r a i s e  or lower t h e  stimulus l e v e l  i s  based on 

t h e  outcome of a block of several  t r ia l s  r a the r  than on t h e  outcome of 

just one t r i a l .  

Recent work i n  t h i s  area has been concentrated on developing 

ef f ic ien t  sequential  methods - experimental designs i n  which t h e  num- 

ber  of t r ia l s  i s  a random variable  t h a t  depends on the  past  h i s tory  of 

the  t r i a l  sequence. 6y9¶12,14,15 

eas i e r  t o  apply experimentally, however, and are  s t i l l  used i n  

psychometric t e s t ing .  1 ' 4 ¶ 5  

Nonsequential designs a re  sometimes 

Up-and-down designs, when used t o  determine sensory thresholds 

fo r  human subjects ,  are usually applied within t h e  framework of a 

two-alternative, forced-choice procedure; t h a t  i s  , t he  gubject i s  

required t o  give one of two types of response t o  a stimulus presented 

i n  t h e  two categories with equal probabi l i t i es .  

and Stewart,' i n  a study of angular accelerat ion,  required a subject 

i n  a centrifuge t o  respond r igh t  or  l e f t ,  depending on which direc- 

For example, Clark 

t i o n  he subject ively perceived t h a t  he w a s  accelerating. The 
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d i f f i c u l t y  i n  using m up-and-down design with the  r e s t r i c t i o n  of 

forced choice is  t h a t  the  probabi l i ty  of responding "correctly" t o  

a stimulus var ies  from 0.5 t o  1 8s t h e  s t i m u l u s  l e v e l  i s  increased, 

ra ther  than from 0 t o  1 which i s  assumed i n  other contexts, such as 

bioassay. 

a r i ses  from the assumption of random guessing under the  r e s t r i c t i o n  

of an equally probable forced (binary) choice. 

l2  y 1  The probabi l i ty  of 0.5 at zero stimulus l e v e l  

Experience with empirical response curves has shown t h a t  t h i s  

r e s t r i c t i o n  r e su l t s  i n  a probability-of-correct-reqponse function 

t h a t  i s  not symmetric about t he  threshold; t ha t  i s ,  the  probabi l i ty  

of increasing a s tep  when below threshold i s  not equal t o  the proba- 

b i l i t y  of decreasing a step when above threshold. This lack of sym- 

m e t r y  can also be deduced from the mathematical model t o  be developed 

below. Since c l a s s i ca l  up-and-down designs assume symmetry of  t he  

response function, we undertook t o  deternine how the asymmetry induced 

by the  forced-choice technique a f fec ts  bias  and precision of t he  

average estimator of threshold. 

observed stimulus leve ls  over a s e r i e s  of t r i a l s1° ' 13  t o  estimate 

threshold,  and i s  found qui te  frequently i n  the psychometric 

l i t e r a t u r e .  1 4 9 5 9 7 8 

This method involves averaging 

This report summarizes an investigation of the  bias  and precision 

of t he  average stimulus l eve l  estimator ( the  dose average estimator 

of Ref. 13) f o r  a block up-and-down, two-alternative, forced-choice 

design (BUDTIF). 

i s  developed, and well-known recursion formulas fo r  exact b ias  and 

A mathematical model of the  forced-choice procedure 
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mean-square e r r o r  of t h e  average estimator are modified t o  handle 

t h e  forced-choice case. 

sive parametric study, t he  main results are presented i n  terms of 

Since t h i s  w a s  not intended t o  be &I exten- 

optimal block design, t h a t  i s ,  t h e  number of tr ials at a given stimu- 

lus level and the  appropriate decision proqedure t o  raise o r  lower 

the  following stimulus l e v e l ,  which maximizes some measure of effi- 

ciency of t h e  average estimator.  The measure of eff ic iency chosen, 

and one t h a t  incorporates t h e  influence of most of t h e  relevant 

parameters, i s  t h e  reciprocal  of t h e  mean-square e r ro r  of t h e  average 

estimator per t r i a l .  

The parameters t h a t  influence t h e  up-and-down procedure are: 

(1) i n i t i a l  stimulus l e v e l ,  ( 2 )  s t e p  s i z e  ( i . e . ¶  t h e  f ixed distance 

between stimulus leve ls  ) , (3)  number of t r i a l  blocks, ( 4 )  block 

design (described below) , and ( 5  

except t h e  phasing f ac to r ,  w i l l  be discussed. The phasing f ac to r ,  

phasing fac tor .  All these parameters, 

which i s  t h e  distance from t h e  threshold t o  t h e  stimulus l e v e l  nearest  

t he  threshold,  w a s  found t o  have a s l i g h t  but ins igni f icant  e f f e c t  .on 

mean-square e r ro r  and bias f o r  moderate t r i a l  sequence lengths. 

Because of t h i s  small e f fec t  on mean-square e r r o r  and b i a s  of t he  

threshold estimator,  and s ince the  phasing f ac to r  cannot be known t o  

t h e  experimenter i n  p rac t i ce ,  a l l  r e su l t s  a re  presented for  a phasing 

fac tor  of zero. 
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I. MODEL OF THE EXPERIMENTAL PROCEDURE 

The general psychophysical method of i n t e r e s t  i s  an expansion 

of t he  BUDTIF procedure developed by Campbell8 and the  multiple up- 

and-down h"D) procedure used i n  bioassay. 1 1 9 1 2  

manipulating the  independent variables are  : 

The r u e s  for 

1. Choose a s e t  of stimulus leve ls  t h a t  are  equally spaced 

(usually i n  log uni ts  of physical magnitudes). 

2. Perform a sequence of t r i a l s  i n  blocks of length k. After 

each block of trials is  completed at a given s t i m u l u s  l eve l ,  

s e l ec t  the  stimulus l eve l  fo r  the  next block as follows: 

a. Increase t o  the  next higher l eve l  following s or fewer 

correct responses i n  the  present block. 

b. Decrease t o  the  next lower l eve l  following r or more 

correct responses ( r  > s ). 

c.  Remain a t  t h e  same stimulus l eve l  following a number of 

correct responses between s and r (not including s or  r ) .  

3. Terminate the  experiment a f t e r  n blocks of t r i a l s .  

These parameters determine the  block design (k ,  s , r) . 
This rule  f o r  changing the  stimulus l eve l  a f t e r  a trial block i s  

more general than Campbell's i n  t h a t  he considered only the case i n  

which the  decision t o  r a i se ,  lower, or  keep the  stimulus leve l  t he  same 

was based on whether the  proportion of correct responses (x/k) w a s  l e s s  

than, greater  than, or equal t o  the  desired proportion ( p >  of correct 

responses, respectively.  In  copfining himself t o  t h i s  ru l e ,  he assumed 

t h a t  the  condition x/k = p had t o  be a possible outcome, where x i s  
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t he  number of correct  responses i n  a block of k t r i a l s ,  and p i s  

some t a r g e t  percentage correct  which i s  being tracked. This ,con- 

d i t i on  necessar i ly  confined him t o  block lengths t h a t  a re  multiples 

of 4 when p = 0.75, an unnecessary r e s t r i c t i o n  when the  above rule 

i s  used. 

Various suggestions have been made concerning t h e  bes t  way t o  

avoid t h e  b ias  t h a t  r e su l t s  i n  t he  threshold estimate when t h e  f irst  

stimulus value i s  far away from the  t r u e  threshold.  

gested using only those leve ls  , i n  t h e  threshold calculat ion,  t h a t  

have been used a t  least twice within the  t r ia l  sequence; Brownlee13 

suggested calculat ing threshold from those leve ls  used after t h e  first 

reversa l  (change of d i rec t ion)  of t h e  s t a i r case ;  H s i  l2 suggested 

beginning a sequence with s ing le - t r i a l  blocks and then switching t o  

k - t r i a l  blocks after the  f i r s t  stimulus reversal .  Since a l l  these 

methods are designed t o  place the  i n i t i a l  trial block for the  cal-  

culat ion of the  threshold estimate i n  the v i c in i ty  of t he  threshold,  

a suggestion of H s i 1 2  w a s  followed and i n  the  computer study- the  

s t a r t i n g  stimulus l e v e l  w a s  confined t o  within three  standard devia- 

t ions  of t he  t rue  (simulated) threshold. 

Cappbell8 sug- 

11. STATISTICAL METHOD 

Recursion Formulas f o r  Bias and Mean Square Error 

The average estimator i s  defined as follows: Let xi be the  

i t h  s t i m u l u s  l e v e l ,  f ixed p r io r  t o  t h e  experiment , i = 1, 2,  . . . , 
where x > x. for  a l l  i ,  and l e t  y j = 0 ,  1, 2 ,  . . ., be 

i + l  1 3 ’  
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the  stimulus l e v e l  used i n  t h e  j+l t r i a l  block. If 1-1 is  the  t rue  

threshold,  consider estimating 1-1 by c, where 

n n 

i; = k y j / d  = y,/n 
j=l j=l  

and k i s  the number of trials per block i n  a sequence of n blocks. 

As i n  Reference 13, the i n i t i a l  stimulus l eve l  

since it was chosen by the experimenter, and the  l eve l  i s  

included since it was selected on the  basis  of t he  experiment. 

yo is  not included 

yn 

Recursion formulas f o r  the  exact bias and mean-square e r ro r  of 

;I are  given by Hsi.12 H s i  generalized t o  the  case of k > 1 the 

formulas developed by Brownlee e t  a1.13 fo r  

cation of Hsi's formulas tha t  is  required i s  the  def ini t ion of 

Po> and P 

a block of t r ia ls ,  staying a t  the same l eve l ,  and decreasing the  

l eve l ,  respectively. These probabi l i t i es  w i l l  be derived l a t e r .  The 

recursive formulas for the bias and mean-square e r ro r ,  as given i n .  

Reference 12  , a re  as follows (given t h a t  

k = 1. The onl;. modifi- 

P+, 

the probabi l i t i es  of increasing the stimulus l eve l  a f t e r  - 

1-1 = 0 )  : 
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where n 

A computer program w a s  wr i t ten  t o  compute t h e  exact bias and mean- 

square e r r o r  using t h e  above formulas. 

result i s  

On a "per trial" b a s i s ,  t h e  

B i a s  = E I C n + l ( ~ )  Iyo=xil/kn 

MSE = EICn+l (y) lyo=xiI2/k2n2 

S t a t  i s t i c a l  Model 

The probabi l i t i es  P,, Po, P- may be derived as follows: I n  a 

forced-choice procedure, a correct response at a given stimulus l e v e l  

x 

anism under study, or is  due t o  some random response process. If t h e  

probabi l i t i es  associated with these two events a re  represented by 

F(x)  and G(x) , respectively, ,  and i f  w e  represent t he  probabi l i ty  of a 

correct  response by P(x), then 

i s  t h e  result of a correct  response due t o  t h e  actual  sensory mech- 

P(x> = F(x) + [l - F(x)IG(x) (4)  

where 0.5 s G(x) I 1 and 0 I F(x) I 1. 

t i o n  of t h i s  equation i s :  

t h e  s igna l  (perceives t h e  st imulus);  with probabi l i ty  1 - F(x) , he 

does not ,  and i f  he does not then he responds with a probabi l i ty  of 

G(x). 

s idered i n  t h i s  report  occurs when G(x) i s  independent of x and is  

The psychological interpreta-  

with probabi l i ty  F ( x ) ,  the  subject detects  

The inequal i t ies  imply t h a t  0.5 s P(x)  5 1. The case con- 
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completely random ( i . e . ,  guessing). 

all x and P(x) = [l + F(x)] /2 .  The term F(x) i s  re fer red  t o  i n  

t h e  l i terature as the  psychometric function and i s  commonly assumed 

t o  be described by t h e  normal cumulative d is t r ibu t ion .  

assumption i s  made here;  thus ,  

I n  such case,  G(x) = 0.5 for 

The same 

Since F(x)  represents t he  ac tua l  

def in i t ion  i t s  mean ( i n  t h i s  case 

sensory mechanism under study, by 

a l s o  i t s  median) u i s  t h e  threshold 

value of i n t e r e s t .  If 1-1 i s  subs t i tu ted  f o r  x i n  Eq. 5, 

P(p> = 0.75. 

t h a t  i s  commonly estimated i n  forced-choice s i tua t ions .  

This i s  t h e  reason f o r  t he  75% t a r g e t  percentage correct  

Now, the probabi l i ty  of increasing, decreasing, or  keeping the  

same stimulus l e v e l  following a t r i a l  block may be represented by t h e  

binomial d i s t r ibu t ion  p a r t i a l  sums. Thus , 

P+ = probabi l i ty  of increasing the  stimulus l e v e l  following a block of 
length k 

= probabi l i ty  of s or fewer correct  responses i n  t h e  block 

S 

m=o 

P = probabi l i ty  of decreasing t h e  stimulus l e v e l  following a block of 

= probabi l i ty  of r o r  more correct  responses i n  t h e  block 

- 
length k 

m = r  
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= probabi l i ty  of remaining a t  t he  same stimulus l eve l  following 

= probabi l i ty  of between s and r correct  responses 

a block of length k 

= 1 - P + - P  - 

Without loss of general i ty ,  t h e  standardized form i s  assumed ( u  and 

CI w e r e  taken t o  be 0 and 1, respect ively) .  The s t ep  s i z e  d was 

taken t o  be constant f o r  a given t r i a l  sequence ( d  = x 

a l l  i) .  

- x 
i i- 1 f o r  

Asymptotic Frequency Distr ibut ion of Stimulus LeveXs 

The up-and-down method can be thought of and modeled as a random 

w a l k  on the  real l i n e  with f ixed s t ep  s i ze .  This way of t r e a t i n g  t h e  

problem i s  useful  fo r  deriving the  asymptotic frequency d i s t r ibu t ion  

of stimulus l eve l s ,  t h a t  i s ,  t h e  r e l a t i v e  frequency with which each 

stimulus l e v e l  is  v i s i t e d  i n  an i n f i n i t e l y  long trial sequence. 

Tsutakawall derived t h i s  d i s t r ibu t ion  fo r  t he  bioassay case,  and t h e  

only modification of h i s  formulas t h a t  we require i s  the  interpreta-  

t i o n  of 

ing a s t ep .  

P+ and P , t h e  prodabi l i t i es  of increasing a s t e p  and decreas- - 
As shown above, these are t h e  probabi l i t i es  of t h e  t a i l s  

of a binomial density f'unction. 

If w e  l e t  p* be the  value o f  p t h a t  makes P+ = P , then it - 
can be shown t h a t  f o r  p* > 1/2: 

P+ > P i f  p < p* 

P+ < P i f  p > p* 

- 

- 
indicat ing t h a t  t h e  stimulus se r i e s  w i l l  not d r i f t  t o  plus or minus 

i n f i n i t y ,  and t h a t  t h e  asymptotic d i s t r ibu t ion  of stimulus leve ls  w i l l  
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have a f i n i t e  mean. 

Table I l ists  the  asymptotic d i s t r ibu t ions  t h a t  were calculated fo r  

different  combinations of k ,  s ,  and r ,  along with t h e i r  means and 

vari,ances. Since converges i n  probabi l i ty  t o  the  asymptotic mean, 

for  

procedure (as n + m )  . 

Therefore, Tsutakawa's formulas can be applied. 

p = 0 t h i s  mean i s  t h e  asymptotic bias  of t he  block up-and-down 

111. RESULTS AND DISCUSSION 

Formulas 1 and 2 were used t o  compute exact b ias  and mean-square 

e r ro r  (MSE) of the  threshold estimator 1;. The parameters t h a t  

determine b ias  and precision of 

(2 )  the  i n i t i a l  stimulus l eve l  yo, (3) the  s tep  s i z e  

ber of t r i a l  blocks 

w a s  discussed e a r l i e r  and eliminated from consideration. Although the  

remaining four parameters a re  under the control of the experimenter, 

he seldom has enough p r io r  information about t he  t rue  values of 1-1 

and (5 t o  allow him t o  sele'ct y d ,  and n optimally. This  study 
0' 

concentrates, therefore ,  on finding block designs tha t  a re  good over 

wide ranges of y d ,  and n. Some sample curves of b ias  and MSE are  

included, i n  spec ia l  cases, t o  provide some insight  i n to  the  r e l a t ive  

influence of these parameters. 

are:  (1) t he  block design (k,s ,r> , 

d,  ( 4 )  t he  nun- 

The phasing factor  n ,  and ( 5 )  t he  phasipg fac tor .  

0 ,  

The block design ( k , s , r )  w i l l  be considered f i r s t .  Not a l l  com- 

binations (k ,s ,r) a re  feasible .  Since the up-and-down method concen- 

t r a t e s  t e s t ing  around a so-called ta rge t  percentage correct , w e  must 

see what percent i le  of the function P(x)  i s  actual ly  tracked by the 
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procedure. If t h e  two t a i l  p robab i l i t i e s  of the binomial d i s t r ibu t ion  

discussed i n  t h e  previous sect ion are equated, and t h e  r e su l t i ng  equa- 

t i o n  i s  solved fo r  t h e  binomial parameter p ,  t h e  resul t  is  t h e  prob- 

a b i l i t y  of correct  response tracked by t h e  up-and-down procedure. 

Table I1 gives t h i s  value of p 

t h e  normalized stimulus l e v e l  t h a t  y i e lds  t h e  probabi l i ty  p ;  t h a t  i s  , 
t h e  value of z i s  found by numerically solving t h e  equation 

as a function of (k,s ,r) along with 

fo r  z, given p. The stimulus l e v e l  t h a t  y i e lds  p i s  then 

x = 1-1 + zu. Because of the  asymmetry of t he  response function, x i s  

not exactly equal t o  t h e  asymptotic value of 

However, these two numbers are expected t o  be close f o r  su i t ab le  s t ep  

sizes d; combinations ( k , s , r )  chosen from Table I1 fo r  fur ther  investiga- 

t i on  were those t h a t  yielded values close t o  0.75 f o r  As shown i n  t h e  

derivation of 

G l i s t e d  i n  Table I. 

p .  

P(x) , the  i m q u a l i t y  of 0.5 < p < 1 m u s t  hold, which 

accounts fo r  t h e  missing en t r i e s  (k ,s  , r)  i n  t h e  tab le .  

of considering combinations ( k , s , r )  t h a t  do not appear i n  Table I1 

can a l so  be shown by the asymptotic behavior of the  up-and-down 

series i n  t h i s  case. It can eas i ly  be s h m  t h a t  fo r  p < 0.5, where 

p 

cussed above, the probabi l i ty  of the stimulus l e v e l  x decreasing on 

the next t r i a l  following a given t r ia l  i s  grea te r  than t h e  probabi l i ty  

of increasing ( i . e . ,  P- > P,). Therefore, the 

The f u t i l i t y  

i s  t h e  probabi l i ty  t h a t  equates t h e  two t a i l  probabi l i t i es  dis- 



process tends t o  drift  t o  -a, and the  absolute b i a s  and MSE increase 

without bound. 

A reasonable way t o  choose the  b e s t  s and r f o r  a given block 

s i z e ,  k ,  or t o  choose the  bes t  k f o r  a f ixed t o t a l  number of  trials, 

i s  t o  base comparisons on the  amount of information ( rec iproca l  of 

MSE) per trial.13 This measure i s  ca l led  the  eff ic iency E: 

1 
E=z7iEm ( 9 )  

where k i s  the  block s i z e ,  n i s  t h e  number of trial. blocks,  and 

MSE i s  t h e  observed mean-square e r r o r  averaged over a l l  i n i t i a l  

stimulus l eve l s ,  yo. Figures 1 through 3 give E as a function of 

t he  t o t a l  t r i a l  sequence length nk f o r  s t ep  s i zes  d = 1/2, 1, and 

2. The values of s and r chosen f o r  each k were those t h a t  gave 

the  highest  e f f i c i enc ie s  over t he  range of t r i a l  lengths considered. 

Whenever no s ingle  combination of s and r w a s  uniformly bes t  f o r  

a l l  t r i a l  lengths,  one of th? two bes t  was  p lo t ted .  

very s t r ik ing ly  the  r e l a t i v e l y  poor performance of k = 2 ,  t he  value 

of  k very of ten used i n  psychometric work, especial ly  f o r  long sequence 

lengths and large s t ep  s i ze .  On the  other hand, the  uniformly good 

performance of k = 5 i s  surpr is ing.  Note t h a t  a block s i z e  of 5 

would be ruled out i f  t he  c r i t e r i o n  s t a t e d  on page 1177 of Reference 2 

were followed ( t h e  r u l e  that it must be possible f o r  the  proportion of 

correct  responses out of the  block of f ive  t o  be exactly equal t o  0.75) .  

Another way of looking a0 the  up-and-down method i s  t o  compare 

i t s  performance t o  t h a t  of a f ixed stimulus l e v e l  design (e .g . ,  the  

The f igures  show 
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c la s s i ca l  z-score method of threshold estimation).  A fixed-level 

method very similar t o  the  z-score method, and t h a t  has served as a 

basis  f o r  comparison with the  up-and-down method i n  b i o a s s a y , 1 0 ~ 1 2 ~ 1 3  

i s  the  method of probi ts  developed by Finney.lG This method is  based 

on a maximum likelihood estimate of threshold, and i s  therefore  known 

t o  be asymptotically e f f i c i en t .  The fixed-level design chosen was 

based on an equal number of trials at each of f ive  stimulus l eve l s ,  

and the formula fo r  t he  variance of 

used, with CI assumed t o  be 1 and t h e  weights adjusted t o  conform t o  

the  response function i n  t h i s  repor t ,  P ( x ) .  

(RE) of the  BUDTIF method i s  defined as 

given i n  Reference 16 was 

The r e l a t ive  efficiency 

Representative efficiency curves i n  Fig. 4 show tha t  the BUDTIF method 

i s  re la t ive ly  e f f i c i en t  for  s t a r t i n g  levels  away from threshold and 

fo r  small t r i a l  sequence lengths. 

the  BUDTIF method seems t o  be more e f f i c i en t  than the probit  estimator 

fo r  large block s izes .  Relative eff ic iencies  Were averaged over s t a r t -  

ing l eve l s ,  yo, fo r  various ( k , s  ,r) and are  shown i n  Table I11 for  

s t ep  s i z e  d = 1. 

Even for  s t a r t i n g  levels  at threshold, 

Bias and MSE of the  estimator are  shown i n  Fig. 5 for k = 8 

and d = 1.5. 

sequence length (nk = 20) i s  p lo t ted  i n  Fig. 6 fo r  various combina- 

t ions  (k , s , r ) .  

Mean-square e r ro r  based on a constant t o t a l  trial 

It is  obvious tha t  s t a r t i n g  s t i m u l u s  levels  far away 
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from threshold i n f l a t e  the  b i a s  and MSE; however, it i s  not uniformly 

t r u e  t h a t  threshold i s  the  bes t  s t a r t i n g  posi t ion.  Because of t h e  

pa r t i cu la r  response function assumed, the  b i a s  for s t a r t i n g  l eve l s  at 

threshold tends t o  be negative and becomes worse as the  t r i a l  sequence 

length increases.  The block s i z e  of k = 8, however (Fig. 5 )  , i s  

remarkably s t ab le  and has a uniformly small pos i t ive  b i a s  up t o  moderate 

sequence lengths.  

l e v e l  i s  negative f o r  most values of ( k , s , r ) ,  explaining why t h e  bias 

Table I V  shows t h a t  t he  asymptotic mean stimulus 

goes negative with increasing trial sequence lengths.  

The e f f e c t  of s t e p  s i z e  d ,  as shown i n  Fig. 6, is similar t o  t h a t  

previously shown for t he  bioassay case. If yo i s  far from threshold,  

the  MSE increases with d. A small d gives a very precise  threshold 

estimate i f  y i s  close t o  u ,  but  a la rge  d i s  more s t a b l e  with 

respect t o  MSE as y gets f a r the r  from u .  
0 

0 

I V .  CONCLUDING REMARKS 

Much of t h e  past  resew'ch on sampling propert ies  of s t a t i s t i c a l  

estimates of s e n s i t i v i t y  thresholds has been based on lengthy and 

inaccurate Monte Carlo computations t h a t  required repeated sampling 

of t he  responses of a simulated human subject .  

Carlo approach is  necessary for analyzing some of the  proposed 

sequent ia l  procedures t h a t  are ana ly t ica l ly  in t rac tab le  , t he  methods 

described i n  t h i s  paper a re  adequate for computing exact bias  and 

precis ion for fixed-length block designs i n  which an average estimator 

i s  used. This makes possible the  rapid search of many more parameters 

than i s  p r a c t i c a l  with Monte Carlo procedures. 

Although the  Monte 
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This invest igat ion of t h e  block-up-and-down design has shown t h a t  

t h e  design of ten used i n  t h e  p a s t ,  based on a t r i a l  sequence length of 

two, i s  one of t h e  worst from t h e  standpoint of sampling efficiency. 

Efficiency curves were provided t o  assi$t t h e  experimenter i n  choosing 

an appropriate block design. 
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TABLE 11. True probabi l i ty ,  p ,  of correct response 
tracked by the  design (k,s ,r) ; stimulus l eve l  t h a t  y ie lds  
t h i s  p i s  z .  

k s r  P z 

2 1 2 0.7071 -0.2167 
3 1 3  

2 3  
4 1 4  

2 3  
4 

3 4  
5 1 5  

2 4  
5 

3 4  
5 

4 5  
6 1 6  

2 5  
6 

3 4  
5 
6 

4 5  
6 

5 6  
7 1 7  

2 6  
7 

‘ 3 5  
6 
7 

4 5  
6 
7 

5 6  
7 

6 7  
8 1 8  

2 7  
8 

3 6  
7 
8 

4 5  
6 
7 
8 

5 6  
7 
8 

.6527 

.7937 

.6245 

.6143 

.7336 

.8409 
,6066 - 5943 
.6980 
.6862 
7839 

.8706 - 5939 

.5815 

.6736 

.5786 
6587 
7472 

* 7355 
.8182 
.8909 
.5843 
.5724 
6555 

.5684 

.6398 

.7206 

.6359 

,7824 

.8431 
9057 
5768 
5655 

.6414 

.5611 
6259 

.7002 
5598 

.6203 

.6838 
7556 
6795 

.8090 

7053 

7715 

.7408 

-. 5089 
.2209 

- 6775 -. 7437 -. 0822 
.4727 

-.7957 -. 8827 -. 2636 
-. 3256 

.6467 -. 8864 
- .9818 

-1.0061 

1707 

-. 3928 

-. 4752 
- ,0143 -. 0725 

.3488 
,7783 

- 9597 
-1.0588 
- .4929 

-1.0948 

- .1479 
- 5837 

-. 6b75 -. 2258 
.1633 
.io80 

,8832 

-1.1217 -. 5743 

‘-.6688 -. 2522 
-1.1765 

,4850 

-1.0213 

-1 1642 

-. 7043 -. 3384 

-. 3612 
- . 0462 

.0280 

.3004 

k s  r p z 

6 7 0.7989 0.2475 
8 

7 8  
9 1  9 

2 8  
9 

3 7  
8 
9 

4 6  
7 
8 
9 

5 6  
7 
8 
9 

6 7  
8 
9 

7 8  
9 

8 9  
10 1 10 

2 9  
10  

3 8  
9 

10 
4 7  

8 
9 

10 
5 6  

7 
8 
9 

10 
6 7  

8 
9 

10  
7 8  

9 
10 

8 9  
1- 0 

9 10 

.8620 

.5600 

.6301 
5555 

,6150 
.6839 
5537 

.6087 

.6673 

.7344 

.6069 

.6611 

.7181 

.7138 
7686 

.8298 

.8768 

5656 
5556 

.6207 

.6062 
6705 

,5489 
* 5997 
.6541 
.7171 
.5483 

.6470 

.7003 

.7614 

.6449 
6939 

.7457 

.8043 

.7414 
7910 

.8465 

.8888 

.9330 

9170 
5707 

7827 

.8204 

9259 

.5511 

5969 

.8377 

5947 
9701 

-1.0742 
-1.1748 -. 6427 
-1 2211 -. 7386 -. 3375 
-1.2408 -. 7808 
- ,4274 
- .O784 
- 7932 - 4618 
- 1607 

.1646 

.0934 

.4115 

-. 1827 

.3605 

.6860 

-1.1206 

-. 7016 
-1.2694 

1.0440 

-1.2207 

- 7978 -. 4096 
-1.2937 -. 8439 
- .5009 
- .1659 

-1.3011 -. 0638 -. 5418 -. 2518 
0573 -. 5540 

- .285O 
- ,0218 

.2759 - .Oh30 

.2072 

.5044 

.4551 

.7640 
1.1080 
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TABLE 111. Relative efficiency of the  average 
estimator with respect t o  the  probi t  estimator 
averaged over a l l  s t a r t i n g  leve ls  
RE = MSE (PROBIT) /MSE (BUDTIF ) . yo; d = 1; 

n 

(k , s , r )  5 10 20 25 50 

(2,1,2) 4.36 3.03 1.72 1.47 0.94 
(4,2,4) 3.76 3.63 --- 3.22 --- 
(5,3,5) 3.56 4.10 5.03 --- --- 
(6,4,6) 2.93 --- --- --- --- 
(8,4,8) 2.19 --- --- --- --- 

(10,699) --- 3.26 --- -_- __- 
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TABLE I V .  Means and variances of t he  asymptotic frequency 
distribution of stimulus l eve ls .  

d = 112 d = l  d = 1-112 

(k , s , r )  Mean V a r  . Mean V W .  Mean V a r .  

(2,1,2) -0.3552 0.6142 -0.5408 1.6412 -0.7557 3.1476 
(3,2,3) A 8 6  -4210 .io45 1.0267 .0320 1.838 
(4,2,4) -.1306 .2737 - . m 8  A764 -.2653 1.254 
(.5,3,5) .I448 .2340 .1118 5725 .0853 1.056 

(7,5,6) .0691 ~ 0 8 1  .02839 .7617 .ooi4 1.399 
C 6,3,6) - ,03663 -1784 -. 07123 .4382 -. 1132 .8072 

(8,4,8) ,0188 .1327 -.005628 .3192 -.0368 .5658 
(9,4,9) -.0862 .1127 -.lo82 -2550 -.1390 -4335 

(10,6,9 1 - 0446 .1649 - .07208 .4245 - .0943 .8293 
- 
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FIGURE LEGENDS 

Fig. 1. Efficiency E = l /kn  (MSE) versus t r i a l  sequence length (kn) 

fo r  s t ep  s i z e  

over a l l  s t a r t i n g  stimulus l eve l s  yo. Umbers i n  parentheses 

are ( k , s , r ) .  

d = 0 .5 .  Mean-square e r r o r  (WE) was averaged 

Fig. 2. Efficiency E = l /kn  (MSE) versus t r i a l  sequence length (kn) 

for s t ep  s i z e  

over a l l  s t a r t i n g  stimulus levels yo. Numbers i n  parentheses 

are ( k , s , r ) .  

d = 1. Mean-square e r r o r  (WE) w a s  averaged 

Fig. 3. Efficiency E = l / k n  (MSE) versus t r i a l  sequence length (kn) 

Mean-square e r r o r  (MSE) w a s  averaged over f o r  s tep  s i z e  

a l l  s t a r t i n g  stimulus leve ls  yo. Numbers i n  parentheses are 

(k , s  , r> .  

d = 2. 

Fig. 4. Relative eff ic iency (RE)  of  the  average estimator with 

respect t o  t h e  probi t  estimator fo r  

theses a re  ( k , s , r )  and 

nk = 40. Tr ip le t s  i n  paren- 

d = 1. 

Fig. 5. ( a )  Bias of the  estimator fi versus i n i t i a l  stimulus y 
0 

and sample s i z e  n; ( k , s , r )  = (8,4,8) and d = 1.5.  (b) W E  of  

t h e  estimator fi versus i n i t i a l  stimulus yo and sample s i z e  n;  

( k , s , r )  = (8,4,8) and d = 1.5.  

Fig. 6. Mean-square e r ro r  of t he  sverage estimator $ fo r  constant 

Numbers t r i a l  sequence length (nk = 20) for 

i n  parentheses denote (k ,s  , r ) .  

k = 2 ,  4, and 10. 
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